Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field.

نویسندگان

  • S S Harilal
  • M S Tillack
  • B O'Shay
  • C V Bindhu
  • F Najmabadi
چکیده

The dynamics and confinement of laser-created plumes expanding across a transverse magnetic field have been investigated. 1.06 microm, 8 ns pulses from a neodymium-doped yttrium aluminum garnet laser were used to create an aluminum plasma which was allowed to expand across a 0.64 T magnetic field. Fast photography, emission spectroscopy, and time of flight spectroscopy were used as diagnostic tools. Changes in plume structure and dynamics, enhanced emission and ionization, and velocity enhancement were observed in the presence of the magnetic field. Photographic studies showed that the plume is not fully stopped and diffuses across the field. The temperature of the plume was found to increase due to Joule heating and adiabatic compression. The time of flight studies showed that all of the species are slowed down significantly. A multiple peak temporal distribution was observed for neutral species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Electrons in Free Electron Laser with Square Core Waveguides

Due to sensitive and important applications of free-electron laser in industry and medicine, improvement of the power and efficiency of laser has always been emphasized. Therefore, understanding the created field and examining the properties of the field in waveguides with different shapes and studying the sustainability of electrons movement are particularly important. In this study, the beh...

متن کامل

Ultracold Plasma Dynamics in a Magnetic Field

Title of dissertation: ULTRACOLD PLASMA DYNAMICS IN A MAGNETIC FIELD Xianli Zhang, Doctor of Philosophy, 2009 Dissertation directed by: Professor Steven Rolston Department of Physics Plasmas, often called the fourth state of matter and the most common one in the universe, have parameters varying by many orders of magnitude, from temperature of a few hundred kelvin in the Earth’s ionosphere to 1...

متن کامل

Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

Dynamics of laser produced plasma in a strong magnetic field was studied using a 1MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3×10W cm was focused on the rod load surface. Side-on laser diagnostics showed the generation of two coll...

متن کامل

Effects of intense laser pulse properties on wake field acceleration in magnetized plasma: Half-Sine Shape (HSS) and Gaussian Shape (GS) pulses

In this paper, we have simulated the excitation of wake fields in the interaction of an intensive laser pulses having Half-Sine and Gaussian time envelopes with a fully ionized cold plasma using particle in cell (PIC) method. We investigated the dependency of wake filed amplitude to different laser and plasma parameters such as laser wavelength, pulse duration and electron number density. In ad...

متن کامل

Confinement of Laser Plasma by Solenoidal Field for Laser Ion Source*

A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004